nemos.basis.RaisedCosineLogEval.evaluate_on_grid#
- RaisedCosineLogEval.evaluate_on_grid(n_samples)[source]#
Evaluate the basis set on a grid of equi-spaced sample points.
- Parameters:
n_samples (
int
) – The number of points in the uniformly spaced grid. A higher number of samples will result in a more detailed visualization of the basis functions.- Return type:
Tuple
[NDArray, NDArray]- Returns:
X – Array of shape (n_samples,) containing the equi-spaced sample points where we’ve evaluated the basis.
basis_funcs – Raised cosine basis functions, shape (n_samples, n_basis_funcs)
Examples
>>> import numpy as np >>> import matplotlib.pyplot as plt >>> from nemos.basis import RaisedCosineLogEval >>> n_basis_funcs = 5 >>> decay_rates = np.array([0.01, 0.02, 0.03, 0.04, 0.05]) # sample decay rates >>> window_size=10 >>> ortho_basis = RaisedCosineLogEval(n_basis_funcs) >>> sample_points, basis_values = ortho_basis.evaluate_on_grid(100)