nemos.basis._transformer_basis.TransformerBasis.fit_transform#
- TransformerBasis.fit_transform(X, y=None)[source]#
Compute the kernels and the features.
This method is a convenience that combines fit and transform into one step.
- Parameters:
X (
TsdFrame
|ndarray
[tuple
[int
,...
],dtype
[TypeVar
(_ScalarType_co
, bound=generic
, covariant=True)]]) – The data to fit the basis functions to and then transform.y – Not used, present for API consistency by convention.
- Returns:
The data transformed by the basis functions, after fitting the basis functions to the data.
- Return type:
array-like
Examples
>>> import numpy as np >>> from nemos.basis import MSplineEval, TransformerBasis
>>> # Example input >>> X = np.random.normal(size=(100, 1))
>>> # Define tranformation basis >>> basis = MSplineEval(10).set_input_shape(1) >>> transformer = TransformerBasis(basis)
>>> # Fit and transform basis >>> feature_transformed = transformer.fit_transform(X)