nemos.basis._basis.AdditiveBasis.to_transformer#
- AdditiveBasis.to_transformer()#
Turn the Basis into a TransformerBasis for use with scikit-learn.
- Return type:
Examples
Jointly cross-validating basis and GLM parameters with scikit-learn.
>>> import nemos as nmo >>> from sklearn.pipeline import Pipeline >>> from sklearn.model_selection import GridSearchCV >>> # load some data >>> X, y = np.random.normal(size=(30, 1)), np.random.poisson(size=30) >>> basis = nmo.basis.RaisedCosineLinearEval(10).set_input_shape(1).to_transformer() >>> glm = nmo.glm.GLM(regularizer="Ridge", regularizer_strength=1.) >>> pipeline = Pipeline([("basis", basis), ("glm", glm)]) >>> param_grid = dict( ... glm__regularizer_strength=(0.1, 0.01, 0.001, 1e-6), ... basis__n_basis_funcs=(3, 5, 10, 20, 100), ... ) >>> gridsearch = GridSearchCV( ... pipeline, ... param_grid=param_grid, ... cv=5, ... ) >>> gridsearch = gridsearch.fit(X, y)